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1. Introduction

In these notes, we shall prove the existence and uniqueness of the Kirillov Model for
admissible representations of GL2(F ) where F is a nonarchimedean field. We follow, for
the most part, Godement’s notes [3], with occasional additions from the original Jacquet-
Langlands opus [4]. For a treatment of the finite-dimensional representations of GL2(Fq)
along the lines of what we do below for a local field F (i.e., the “harmonic analysis approach”),
we recommend Piatetski-Shapiro’s book [5]; the algebro-geometric approach to the finite field
case can be found in [1] or [2]. We will, at times, compare the development given below to
the finite-field case as presented in [5].

2. Admissible Representations

Throughout this section, we let F be a nonarchimedean, locally compact field. We let
OF be the associated ring of integers, and O×F the group of units of OF . We fix once and for
all a nontrivial, continuous, additive character, τ : F → C1, with C1 the complex unit circle
{z ∈ C : |z| = 1}; we have τ(x+ y) = τ(x)τ(y). The prime ideal of OF will be denoted by p;
we pick a uniformizer $ of p. We denote the associated valuation on F by vp. Let q = |$|−1F ,
the cardinality of the residue field OF/p. We note that q is a power of p, a prime integer.
The kernel of τ will be an open subgroup of F ; i.e., p−d for some integer d. From now on d
will refer to this specific integer.

We will frequently deal with multiplicative characters χ, which will generally mean
continuous maps χ : O×F → C such that χ(xy) = χ(x)χ(y). (Sometimes, however, we will use
χ to denote multiplicative character on all of F×; we note that such χ is uniquely determined
by the value of χ($) and the restriction of χ to O×F .) We define the conductor of a character
χ of O×F to be the smallest value of f such that χ is constant on 1 + pf (i.e., the largest pf

such that χ restricted to 1+pf is trivial). Note that unlike d defined above, which can be any
integer, positive or negative, f can only be 0, 1, . . .. If, moreover, f = 0, then the character
χ is trivial. Observe that the set 1 + pf is the connected component of the identity of the
kernel of χ, and is (as we will show below), itself a multiplicative subgroup of F× for all f .
We note that Godement [3] and Jacquet-Langlands [4] use the term “conductor” to refer to
the ideal pf as opposed to the integer f . This may sow some confusion among those partial
to Godement and Jacquet-Langlands’s nomenclature: when we refer to a character with a
“large” conductor, we will mean a character with a large numerical value of f ; of course,
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however, this will mean that the ideal pf is small. We hope that our readers will forgive
us for this departure from the scriptures. Finally, we note that there are only finitely many
characters with conductor bounded by a given constant.

We let S (F ) denote the complex vector space of locally-constant, compactly-supported
functions from F to C. We now pick an additive Haar measure dx on F : we note that
d(ax) = |a| dx. The measure dx is unique up to a multiplicative constant; however, we may
specify dx uniquely by insisting that dx is “self-dual,” i.e., that the Fourier inversion formula
can be written:

f̂(y) =

∫
F

f(x)τ(xy)dx =⇒ f(x) =

∫
F

f̂(y)τ(xy)dy

for all f ∈ S (F ). We shall denote a multiplicative Haar measure on F ∗ by d∗x; we will
generally pick the unique measure such that

∫
O×F

d∗x = 1. (Recall that O×F is the maximal

compact of F×.) Note that d∗x = c · dx|x| with c a constant. However, we should not expect

this constant to be, in general, 1. For example, if d = 0 – i.e., ker(τ) = p0 = OF – then
applying Fourier inversion to the test function f = 1OF (i.e., the indicator function of OF ),

we see that f̂(y) = 1OF , too. Thus Fourier inversion holds iff Vol(OF ) = 1. However, in this
case, the measure dx

|x| assigns a volume of q−1
q

to O×F where q is the cardinality of the residue

field OF/p. Thus we have d∗x = q
q−1 ·

dx
|x| .

Finally let GF := GL2(F ), sometimes just written G; and let MF = GL2(OF ), some-
times just written M . Note that M is a maximal compact subgroup of G . We shall pick the
unique Haar Measure dg on G such that M has volume 1.

In contrast to the case of GL2(Fq), the finite-dimensional representations of GF for
nonarchimedean F will all be rather uninteresting (see Lemma 3.1). Recall that the irre-
ducible representations of GL2(Fq) of dimension greater than 1 have dimension q− 1, q, and
q + 1; those of dimension q − 1 = |F×q | are called the “cuspidal” representations, those of
dimension q are called the “special” representations, and those of dimension q + 1 are called
the “principle series.” We see that the dimensions of non-character irreducible representa-
tions grows with the cardinality of the field. Thus we might expect that the only irreducible
representations of dimension greater than one for GL2(F ) with (an infinite) nonarchimedean
field F will be infinite-dimensional.1 To tame the potentially wild behavior of such infinite-
dimensional representations, we will restrict our attention to a very special class of infinite-
dimensional representations called admissible representations. These will bear a strong re-
semblance to the finite-dimensional representations of GL2(Fq) classified in [5]. We shall now
define this notion precisely.

Let π be a representation of GF on some complex vector space (generally infinite-
dimensional) V . If v ∈ V is some vector, we let StabG(v) be the stabilizer of v in G, i.e.,
{g ∈ GF : π(g)(v) = v}. We call the representation π smooth if StabG(v) is an open

1 This intuition is somewhat imprecise, however, since Fp = Fp, the algebraic closure of Fp – it does not
equal Qp. The claim made, however – that there are no finite-dimensional representations of GL2(F ) for F
nonarchimedean, is in fact true (Prop 3.1 a)), so there may be something to it. A more persuasive heuristic,
however, is that the explicit constructions of the irreducible representations of GL2(Fq) in [5] are on certain
function spaces which we would expect to be infinite-dimensional if the |F | is infinite.
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subgroup of GF for each v. We say that π is admissible if, given H ⊂ G an open subgroup,
the set of H-stable vectors {v ∈ V : ∀h ∈ H, π(h)(v) = v} (which forms a vector subspace
of V ) is finite-dimensional.

Another equivalent classification is given as follows. We may restrict π as a represen-
tation of G to the maximal compact M = GL2(OF ). The condition of the admissibility of π
is equivalent to V decomposing as a direct sum

(1) V '
⊕
θ∈IrrM

θnθ ,

where θ ranges over all non-isomorphic finite-dimensional irreducible representations of M ,
and nθ <∞ for all θ. I.e., the multiplicity of each irreducible, finite-dimensional representa-
tion of θ of M in V is finite, and the direct sum of all such irreducible representations of M
equals V .

Hence, while admissible representations in general have infinite dimension, this dimen-
sion is, in fact, countable. This is nice from the perspective of algebra but, perhaps, a bit
odd from the perspective of functional analysis; in particular, it is a consequence of the Baire
category theorem that the vector space V cannot be a Banach or Hilbert space. However,
this should not vex us: we may always complete V with respect to a norm if we are in
possession of one; and, in any case, when we construct models for V as a space of functions
(from, say F× or G to C), the functions representing vectors of V will all be locally constant,
and so have a very much more discrete flavor than those we are familiar with from usual
(Archimedean) functional analysis.

We recall from representation theory that for every representation π of G on a vector
space V , there is a canonical dual representation of G on V ∗ given by g 7→ π(g−1)t, and we
recall from linear algebra that the dual vector space of a direct sum of is a direct product.
Thus we see that

V ∗ '
∏

θ∈IrrM

(θ∗)nθ ,

which no longer has countable dimension and so cannot be admissible. We can remedy this
situation by considering instead the smaller space:

Ṽ :'
⊕
θ∈IrrM

(θ∗)nθ .

We note that this corresponds to the subspace of V ∗ for which v∗ ∈ V ∗ is invariant under

some open subgroup of G. Thus Ṽ is, in fact, a subrepresentation of the dual representation,
which is admissible. We call this the contragradient representation of π, denoted by π̃.

If V1 is a G-subrepresentation of π then V ⊥1 := {v∗ ∈ Ṽ : ∀v ∈ V1, v∗(v) = 0}; i.e., the

set of all v∗ ∈ Ṽ annihilating V1, is a G-subrepresentation of π̃ on Ṽ , and (V ⊥1 )⊥ = V1. If V
has no nontrivial invariant subspaces then we say it is irreducible. Our purpose here is to
provide a concrete model for every irreducible, admissible representations of GF .
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We shall find that this classification beautifully parallels the classification of irreducible
finite-dimensional complex representations of GL2(Fq). This will offer some ex post confirma-
tion that admissible representations of GF are the “right” analogue of the finite-dimensional
irreducible representations of the finite-field case.

But perhaps the main theoretical virtue of admissible representations is that they
satisfy an analogue of Schur’s Lemma. Indeed: if T ∈ End(V ) is an operator commuting
with π, then it preserves each θnθ ; since these are finite dimensional, T has an eigenvector in
each such θnθ . As in the usual Schur lemma, we now consider a single eigenvalue λ of T ; and
let V ′ be the kernel of T − λI. We see that V ′ is a nontrivial subrepresentation of V , so by
irreducibility it is equal to V . Thus T = λI is a scalar.

Note, however, that we do not have semisimplicity of admissible GF -representations.2

I.e., given a π(GF )-invariant subspace V ′ ⊂ V , we may not in general be able to find a
π(GF )-invariant complement of V ′ in V ; what we do have is a canonical correspondence

between the invariant subspaces of V and the invariant subspaces of the contragradient Ṽ as
described above.

3. The Kirillov Model: First Steps

We shall construct, for any irreducible admissible representation π of GF , a model for
π whose underlying vector space is a particular class of locally constant functions on F×.
First, however, we shall show that the finite-dimensional representations of G are not terribly
interesting:

Proposition 3.1 (c.f., Prop 2.7 of [4]). Let π be an irreducible admissible representation of
GF on the vector space V .

a) If V is finite dimensional, then dimV = 1, and there exists a character3 χ of F×

such that

π(g) = χ(det g).

b) If V is infinite-dimensional there is no nonzero vector invariant under the action of

the unipotent subgroup

(
1 x
0 1

)
.

(We note that part b) indicates a departure from the finite field case: in the finite field case,
[5] defines the Jacquet module as the vector space unipotent invariants. This has dimension
0, 1 or 2, corresponding to the representation being cuspidal, special, or principle series,
respectively. In the case of nonarchimedean local fields F , we see the space of unipotent
invariants is an uninteresting structure: it is always 0. For nonarchimedean F one rather

2 Note that this is not a problem for the maximal compact M , however, as we can apply the usual averaging
trick for compact groups to find an MF -invariant Hermitian form on V , and then take the orthocomplement
of V ′. Thus V is semisimple as an MF -representation: indeed, this follows from (1).
3 Here we depart from the language of Jacquet-Langlands [4] slightly. For us a “character” refers simply to a
continuous (a.k.a., locally constant) multiplicative homomorphism χ : F× → C×. Jacuquet-Langlands calls
these “quasicharacters” and reserves the title of “character” for those χ : F× → C× which take their values
in the complex unit circle C1. We shall call these “unitary characters.”
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define the Jacquet module as a quotient space of V on which the unipotent elements acts
trivially, rather than as a subspace of V .)

Proof. a) If π is finite-dimensional then its kernel H is an open normal subgroup of GF . The
idea is to consider the intersection of H with the unipotent subgroup. We see that there
must exist an ε > 0 such that (

1 y
0 1

)
∈ H

for all |y| < ε. For any x ∈ F , we may find an a ∈ F× such that |ax| < ε. We have the
identity4

(2)

(
a−1 0
0 1

)(
1 ax
0 1

)(
a 0
0 1

)
=

(
1 x
0 1

)
,

which implies, by normality of H, that all unipotent matrices

(
1 x
0 1

)
∈ H. But an identical

argument reveals that the “opposite” uinpotent matrices, i.e., those matrices of the form(
1 0
x 1

)
, lie in H for all x ∈ F .

Since the unipotent and opposite-unipotent matrices together generate SL2(F ), we see
that H contains SL(2, F ). Thus π must factor through the determinant, and we see that
π(g1)π(g2) = π(g2)π(g1) for all g1, g2 ∈ GF . Thus, by Schur’s Lemma, every π(g) is a scalar
multiple of the identity:

π(g) = χ(det g)I

for some multiplicative homomorphism χ : F× → C×. The continuity of χ follows from
smoothness of π and noting that

π

(
a 0
0 1

)
= χ(a)I.

This completes the proof of a).5

4 Warning: there is an egregious typo in this identity in the online version of Jacquet-Langalnds [4].
5 One might wonder why this argument fails if, say, rather than GF we consider, MF = GL2(OF ). Indeed,
we know that MF must have many finite-dimensional representations, and so it must in turn have many
normal open subgroups. The problem is that the matrices with which we conjugated our unipotent elements,(
a 0
0 1

)
, do not lie in MF . We will use the fact that the subgroup of matrices

(
a 0
0 1

)
conjugates unipotent

matrices

(
1 x
0 1

)
by scaling the entry x, i.e., identity (2), several times, so it is worth internalizing this

algebraic identity.
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b) Say that v ∈ V is fixed by π

(
1 x
0 1

)
for all x ∈ F . Let H0 be stabilizer of v, and let

H be the set of matrices that preserve the 1-dimensional subspace Cv (i.e., {g ∈ GF : π(g)v =
λv for some λ ∈ C}). We will show that H has finite index in GF . This in turn will imply
that π(GF )(v) is a finite-dimensional subrepresentation of V (indeed, it has basis π(gi)v where
gi ranges over the finite collection of coset representatives for GF/H); thus, π(GF )(v) = V
by irreducibility. But this contradicts the assumption of infinite-dimensionality of V , so we
are done.

So we must prove that H ⊂ G has finite index. To this end, we first prove that
H0 ⊃ SL2(F ). We already have that H0 contains all unipotent matrices; like in a), we would
like to show that it contains all opposite unipotent matrices. By smoothness of π, we know
that H0 is open, whence it must contain a matrix

g :=

(
a b
c d

)
with c 6= 0; i.e., H0 must intersect the “big cell” of the Bruhat decomposition. Thus H0 also
contains:

(3)

(
1 −ac−1
0 1

)(
a b
c d

)(
1 −dc−1
0 1

)
=

(
0 −det(g)

c
c 0

)
.

Let b0 = −det(g)
c

, and w0 =

(
0 b0
c 0

)
=

(
0 −det(g)

c
c 0

)
If y ∈ F , we let x = b0

y
c, and we note

that

(4)

(
1 0
y 1

)
= w0

(
1 x
0 1

)
w−10 .

Thus we have that

(
1 0
y 1

)
∈ H0 for all y, whence H0 ⊃ SL2(F ).6

Since H ⊃ H0 ⊃ SL2(F ), and H manifestly contains all scalar matrices, we see that
the index of H in GF will divide the index of (F×)2 (i.e., the determinants of scalar matrices)
in F×. This index is finite, and thus so is the index of H in GF . Our argument is complete.

�

We may thus, from now on, restrict our attention to merely infinite-dimensional ad-
missible representations. We can now state our fundamental result:

Theorem 3.2 (The Kirillov Model, c.f., Theorem 1 of [3]). Let π be an irreducible admissible
representation of GF on an infinite dimensional vector space V . There exists one and only

6 As with identity (2), identities (3) and (4) are algebraically intriguing and worth internalizing. (3) states
that we may conjugate an arbitrary matrix by a unipotent matrix to get an off-diagonal matrix – this is a
variant of the Bruhat Decomposition. (4) states that conjugating a unipotent matrix by any off-diagonal
matrix yields an opposite unipotent matrix.
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one space V ′, consisting of (a special class of) locally constant functions from F× to C×, and
one and only one representation π′ of GF on V ′ isomorphic to π, such that

(5)

[(
π′
(
a b
0 1

))
(ξ′)

]
(x) = τ(bx)ξ′(ax)

for all ξ′ ∈ V ′, a, x ∈ F×, b ∈ F .
Furthermore, each function in V ′ vanishes for |x| sufficiently large, and the space

S (F×) of compactly-supported, locally constant functions of F× (i.e., continuous ξ : F× → C
such that ξ(x) = 0 for both |x| large and |x| small) is a subspace of V ′. Moreover, S (F×)
has finite codimension in V ′.

This theorem tells us that the representation of the mirabolic subgroup7:{(
a b
0 1

)
: a ∈ F×, b ∈ F

}
⊂ GL2(F ),

defined by (5) on the C-vector space S (F×) of locally constant compactly supported C-
valued functions on F×, uniquely extends to a representation of GL2(F ) on a (potentially
larger) space V ′ ⊃ S (F×) of locally constant functions F× → C. Moreover, S (F×) has
finite codimension in V ′. Since, as the theorem tells us, every function in V ′ vanishes for
|x| large, we see that that the only deviation of V ′ from S (F×) can occur with respect to
the functions’ behavior near 0 ∈ F ; we see, in fact, that V ′ = S ⊕ 〈ξ1〉 ⊕ · · · 〈ξn〉, where
{ξi}i are a finite collection of functions that do not continuously extend to 0. It turns out
that the only possible values for n are n = 0, 1, or 2 for all admissible, irreducible π (i.e.,
the codimension of S (F×) in V ′ is either 0, 1 or 2), and that the ξi may be chosen to be
certain multiplicative characters of O×F → C (extended to 0 outside O×F ). These will be called
Jacquet characters. As in the finite field case, these are called cuspidal, special, and principle
series representations, respectively.

The proof of this theorem will be covered over several subsections. To orient ourselves,
we begin with some indication of how to construct the space V ′.

Imagine that we have such a space of functions V ′ and such a representation π′. One
benefit – perhaps the single greatest benefit – of having a space of functions is that for each x
in the domain F× we have a linear functional on V ′ given by evaluation at x. In particular,
we have the canonical linear functional given by evaluation at 1, namely L : ξ′ → ξ′(1).

Let us see what relation (5) tells us about the space of functions V ′. We let ξ 7→ ξ′

denote an isomorphism from (π, V ) to (π′, V ′). (5) states that if η = π

(
a b
0 1

)
ξ, then

η′(x) = τ(bx)ξ′(ax).

Considering the action of the unipotent and diagonal matrices in the mirabolic subgroup,
and applying L (a.k.a., evaluation at 1) to both sides, we find:

7It is entertaining to note that that originally coined by Kazhdan and Gelfand as a portmanteau of “mirac-
ulous parabolic.” If we succeed in nothing else, we hope that this document persuades our reader of the
miraculousness of this subgroup.
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(6) ξ′(x) = L

[
π

(
x 0
0 1

)
ξ

]
.

and

(7) L

[
π

(
1 b
0 1

)
ξ

]
= τ(b)L(ξ).

(6) tells us that the values of the function ξ′ can be completely reconstructed from applying

L to the image of ξ′ under the action of π

(
x 0
0 1

)
. (7), on the other hand, tells us something

important about the kernel of L. In particular:∫
p−n

τ(x)L

[
π

(
1 x
0 1

)
ξ

]
dx = L(ξ)

∫
p−n

dx = L(ξ) · Vol(p−n).

Thus, if ξ′ is in the kernel of L, we find that∫
p−n

τ(x)L

[
π

(
1 x
0 1

)
ξ

]
dx = 0.

This motivates perhaps the most important idea of the proof: we let V0 ⊂ V denote the
subgroup of V given by the collection of vectors ξ ∈ V such that∫

p−n
τ(x)π

(
1 x
0 1

)
ξdx = 0

for all large n.8 This is called the subspace of twisted unipotent averages. Our hope is
that V0 (or, more precisely, the corresponding subspace in V ′) is exactly the kernel of the
linear function L. So we would hope that the space of V0 ⊂ V is of codimension 1, i.e., that:

dim(V/V0) = 1.

Proving this will constitute the bulk of our argument. Once we have accomplished this, then,
picking some isomorphism of V/V0 with C, we may define our function ξ′, associated to some
ξ ∈ V , via:

8 A small analytical detail should be noted here, which will apply to every subsequent integral we will
consider whose integrand lies in V . Because we are integrating over a compact subgroup of F , namely p−n,

and because the stabilizer of each ξ ∈ V is open, the integrand τ(x)π

(
1 x
0 1

)
ξ for x ∈ F will only ever lie in

a finite-dimensional subspace of V . Thus the usual definition of an integral of a function which takes values
in a finite dimensional vector space suffices for our purposes. Moreover, because p−n is compact, we see that
this integral converges (in fact, it is a finite sum ).
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(8) ξ′(x) := π

(
x 0
0 1

)
ξ mod V0.

In the meantime, let us define the space V/V0 := X. (Note that a priori we do not
know if dim(X) is even finite.) The formula (8) then defines, for each ξ ∈ V , a corresponding
function ξ′ from F× to X, which we will take to be the definition of ξ′.

We now verify the property (5) for the space of X-valued functions defined by (8).

Lemma 3.3. If η = π

(
a b
0 1

)
ξ, then η′(x) = τ(bx)ξ′(ax).

Proof. We must show that π

(
x 0
0 1

)
η − τ(bx)π

(
xa 0
0 1

)
ξ ∈ V0; i.e., that

(9)

∫
p−n

τ(t)π

(
1 t
0 1

)[
π

(
x 0
0 1

)
π

(
a b
0 1

)
− τ(bx)π

(
xa 0
0 1

)]
ξdt = 0

or

(10)

∫
p−n

τ(t)π

(
1 t
0 1

)[
π

(
xa xb
0 1

)
− τ(bx)π

(
xa 0
0 1

)]
ξdt = 0

for sufficiently large n. We would like to apply a change of variables to make the two terms
in the difference cancel. We see that the first term is

(11)

∫
p−n

τ(t)π

(
xa xb+ t
0 1

)
ξdt

while the second term is

(12)

∫
p−n

τ(t− bx)π

(
xa t
0 1

)
ξdt.

Applying the change of variables t 7→ t−bx to (11) gets the two integrals to cancel identically,
provided that n is so large that bx ∈ p−n (so that the domain over which we integrate is
preserved). Thus, for sufficiently large n, (9) does indeed hold, as desired.

�

Lemma 3.4. Each X-valued function ξ′(x) is locally constant and vanishes for |x| sufficiently
large.

Proof. The idea here, like in Proposition 3.1, is to consider the intersection of the stabilizer
of a vector ξ ∈ V with the unipotent and diagonal subgroups of the mirabolic. Indeed, if

9
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a ∈ F× is sufficiently close to 1, then by smoothness of π, π

(
a 0
0 1

)
ξ = ξ. Thus by Lemma

3.3, we have that

(13) ξ′(ax) = ξ′(x)

for all x ∈ F×. Thus ξ′ is locally constant.9

Next we observe that there is an ideal a in F such that π

(
1 b
0 1

)
ξ = ξ for all b ∈ a.

Applying Lemma 3.3 again, we find that ξ′(x) = τ(bx)ξ′(x) for all x and all b ∈ a; thus
(1− τ(bx))ξ′(x) = 0. If |x| is so large that ax ) p−d = ker(τ), then τ(bx) 6= 1 for some value
of b ∈ a, whence ξ′(x) = 0.

�

Lemma 3.5. The map ξ 7→ ξ′ is injective.

Proof. Let us say that ξ′ = 0. Recall that this means that π

(
x 0
0 1

)
ξ ∈ V0 for all x 6= 0.

Thus, for each x ∈ F×: ∫
p−n

τ(t)π

(
1 t
0 1

)
π

(
x 0
0 1

)
ξdt = 0

for sufficiently large n (where n depends upon x). Equivalently:∫
p−n

τ(t)π

(
x 0
0 1

)
π

(
1 x−1t
0 1

)
ξdt = 0

for sufficiently large n (given x).10 Thus we may pull out π

(
x−1 0
0 1

)
to get:

π

(
x 0
0 1

)(∫
p−n

τ(t)π

(
1 x−1t
0 1

)
ξdt

)
= 0,

or, since π

(
x 0
0 1

)
is invertible, we may simply write∫

p−n
τ(t)π

(
1 x−1t
0 1

)
ξdt = 0.

9 In fact, (13) tells us more than than ξ′ is locally constant. Given ξ′ there exists a neighborhood U of 1 in
F× such that (13) holds for all a ∈ U . Restricting U if necessary, we may assume U to be of the form 1 + pl

for some l (depending on ξ). Then we see that ξ′ is constant on the neighborhoods x(1 + pl) for all x. As
x→ 0, we see that this implies that the oscillation of our function cannot be too violent: if |x| = q−k, then
ξ(x) is constant on an open compact disk of volume q−k−l containing x.
10 Swapping the order of the diagonal and and unipotent multiplicands in the mirabolic subgroup, i.e., the

matrix identity

(
1 t
0 1

)(
x 0
0 1

)
=

(
x t
0 1

)
=

(
x 0
0 1

)(
1 x−1t
0 1

)
, will be of great use to us throughout our

work here. This is another algebraic identity worth internalizing.

10



Topics Proposal Aaron Slipper

Thus, by a change of variables t 7→ x−1t, we find that:

(14)

∫
p−n

τ(tx)π

(
1 t
0 1

)
ξdt = 0.

for n sufficiently large (depending on x, as always). We notice that this is simply the Fourier

transform of y 7→ 1p−n ·π
(

1 y
0 1

)
ξ. Thus (14) tells us that, given any x ∈ F except x = 0, the

Fourier transform of the function y 7→ 1p−n ·π
(

1 y
0 1

)
ξ is equal to 0 when evaluated at x, for

all n sufficiently large given x. For those familiar with the theory of distributions, this should

be very suggestive: we expect that ϕ(x) := π

(
1 x
0 1

)
ξ is the inverse Fourier transform, in

the sense of distributions, of something supported only at 0. This should imply that ϕ(x) is
constant (recall the heuristic, beloved by physicists, that the inverse Fourier transform of a
Dirac delta function is a constant function).

We shall now rigorously demonstrate that ϕ(x) := π

(
1 x
0 1

)
ξ is constant. Recall

that there is a nonzero ideal a ⊂ p such that π

(
u 0
0 1

)
ξ = ξ for all u ∈ 1 + a. We note

that all such u are units, i.e., |u| = 1; moreover, the collection of all u ∈ 1 + a form a
multiplicative subgroup of O×F : closure under multiplication and identity follow easily, while
inversion follows from the power series identity (1 + a)−1 = 1− a + a2 − · · · which is easily
seen to converge if a ∈ a ⊂ p (indeed, it is a geometric series). Define

φn(x) :=

∫
p−n

τ(xt)ϕ(t)dt.

We find that, for all n, t, and u ∈ 1 + a:

φn(xu) =

∫
p−n

τ(xut)ϕ(t)dt

=

∫
p−n

τ(xt)ϕ(u−1t)
dt

|u|

=

∫
p−n

τ(xt)π

(
1 u−1t
0 1

)
ξdt

=

∫
p−n

τ(xt)

(
π

(
u−1 0
0 1

)
π

(
1 t
0 1

)
π

(
u 0
0 1

))
ξdt

=

∫
p−n

τ(xt)

(
π

(
u−1 0
0 1

)
π

(
1 t
0 1

))
ξdt

= π

(
u−1 0
0 1

)
φn(t).

11
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By (14), we see that, given x ∈ F×, we will have that ϕn(x) = 0 for all n sufficiently

large (to get τ(tx) as in (14) simply replace x by −x). If K is a compact subset of F×, then
we may find a compact set K ′ ⊃ K, which is a finite union of cosets mod∗(1 + a). (Indeed,
we may let K ′ = K · (1 + a).) Thus, picking a (finite) collection of representatives xi for
K ′ mod∗(1 + a), we may find an N sufficiently large that ϕn(xi) = 0 for all i if n ≥ N . But

the identity φn(xu) = π

(
u−1 0
0 1

)
φn(t) tells us that the vanishing of φn(xi) is contagious:

we see that φn(x) = 0 for all x ∈ (1 + a)xi; i.e., φn(x) = 0 for all x ∈ K ′ when n ≥ N . Thus,
a fortiori, φn(x) = 0 for all x ∈ K if n ≥ N .

The virtue of this argument is that we now know that we can get φn(x) to vanish when
n is sufficiently large for all x ∈ K simultaneously, where K is an arbitrary compact subset
of F×. This is better than knowing that φn(x) vanishes for sufficiently large n at each fixed
value of x. Let us now pick a test-function ψ ∈ S (F ) whose Fourier transform

ψ̂(x) =

∫
F

τ(xt)ψ(t)dt

we suppose vanishes at x = 0 (i.e.,
∫
F
ψ(t)dt = 0). Since ψ̂(x) ∈ S (F ) (a property certainly

not enjoyed by Archimedean fields), we see that ψ̂(x) = 0 for all x in some open neighborhood

of 0. We can therefore say that the support of ψ̂ is contained in some compact subset K
of F×. We see that ψ(x) vanishes for all x outside of p−n for some n since ψ ∈ S (F ), and
we may, increasing n if necessary, also assume that φn(t) = 0 for all t ∈ K. Thus, we find,
applying the Fourier inversion formula and Fubini’s theorem, that∫

F

ψ(x)ϕ(x)dx =

∫
p−n

ψ(x)ϕ(x)dx

=

∫
p−n

ϕ(x)

∫
F

ψ̂(t)τ(tx)dtdx

=

∫
p−n

ϕ(x)

∫
K

ψ̂(t)τ(tx)dtdx

=

∫
K

ψ̂(t)

∫
p−n

ϕ(x)τ(tx)dxdt

=

∫
K

φn(t)ψ̂(t)dt

= 0.

Thus the function ϕ(x) is orthogonal to all functions ψ ∈ S (F ) that satisfy
∫
F
ψ(t)dt =

0, i.e., all functions ψ ∈ S (F ) orthogonal to the function 1. Thus ϕ(x) is constant, as
desired.11

11 To solidify this argument, we note that, by smoothness of π, there exists some ideal b ⊂ F such that
ϕ(x + b) = ϕ(x) for all b ∈ b. If, one the other hand x, y ∈ F and x − y 6= b, then letting ϕ(x) := v and
ϕ(y) := w, we may integrate ϕ(x) against a “Yin-Yang Function” ψ(x) := 1x+b − 1y+b which clearly lies in

12
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Now we observe that if ϕ(x) := π

(
1 x
0 1

)
ξ is constant, then ξ is invariant under all

unipotent operators. By Proposition 3.1 b), this implies that ξ = 0, and thus the ξ′ = 0 =⇒
ξ = 0 as desired.

�

From now on, we will simply identify ξ with the function ξ′ and drop the “prime”
notation; Lemma 3.5 tells us that we lose no information doing so. Thus ξ ∈ V will now be
seen to be an X-valued function on F×, ξ(x) will be understood to mean ξ′(x), and (π(g)ξ)(x)
to mean (π′(g)ξ′)(x). The canonical map L defined in the preamble to Lemma 3.3 will mean
ξ 7→ ξ(1) (which, we note, is a map from V to X = V/V0; we do not yet know that L is a

linear functional). By Lemma 3.3 we may write π

(
a b
0 1

)
ξ(x) = τ(bx)ξ(ax) with impunity.

Lemma 3.6. Let us denote by SX(F×) the space of X-valued, locally constant functions,
with compact support on F× (i.e., the collection of all locally constant ξ : F× → C such that
ξ(x) = 0 if |x| is sufficiently small or sufficiently large). Then SX(F×) ⊂ V . Moreover, for

all unipotent matrices

(
1 b
0 1

)
, b ∈ F , and all ξ ∈ V , we have that ξ−π

(
1 b
0 1

)
ξ ∈ SX(F×).

Proof. We start with the last statement. Since

(
ξ − π

(
1 b
0 1

)
ξ

)
(x) = (τ(bx)− 1)ξ(x), and

τ(x) = 1 on a neighborhood of 0, we see that ξ−π
(

1 b
0 1

)
ξ vanishes on a neighborhood of 0,

too. We already know that ξ(x) vanishes for |x| large by Lemma 3.4. Thus ξ−π
(

1 b
0 1

)
ξ ∈

SX(F×).
Next we will show that SX(F×) ⊂ V . We claim that it suffices to check that, if x ∈ X

and ϕ ∈ S (F×) is a compactly supported, locally constant, C-valued function on F×, then
the X-valued function x 7→ ϕ(x)x is in V . I.e., we claim that such “1-dimensional” functions
in SX(F×) span all of SX(F×).

Indeed: given an arbitrary function ξ ∈ SX(F×), we note that the support of ξ is
compact, while for all x ∈ Supp ξ, identity (13) gives us that ξ(ax) = ξ(x) for all a ∈ 1 + a,
where a ⊂ p is some ideal. Thus we may cover Supp ξ with open subsets of the form
(1 + a)x as x ranges over all x ∈ Supp ξ. By compactness, there exists a finite subcover;
moreover, as demonstrated in the proof of Lemma 3.5, 1 + a is a multiplicative subgroup,
so the multiplicative translates of 1 + a are disjoint. Thus, in fact, the image of ξ in X is
finite (as a set), and so lies in a finite-dimensional vector-subspace X ′ ⊂ X. Choosing a basis
{ei}ni=1 for X ′, we may write ξ(x) =

∑n
i=1 ϕi(x)ei, where each ϕi ∈ S (F×).12 Thus

S (F ) and has total integral 0 (and, since x− y /∈ b, is nonzero). We find, applying the above orthogonality
relation, that 0 =

∫
F
ψ(x)ϕ(x)dx = (v − w)(Vol(b)), whence v = w. Thus ϕ is constant.

12 Our argument goes further; in fact, we may take each ϕi be the characteristic function of some multiplica-
tive translate of 1 + a. I.e., letting xi be a (finite) collection of representatives (1 + a)-multiplicative-cosets
in Supp (ξ), we may let ϕi(x) = 1xi(1+a), and ei = ξ(xi).

13
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(15) SX(F×) = S (F×)⊗X;

i.e., SX(F×) is spanned by functions of the form x 7→ ϕ(x)v, for ϕ ∈ S (F×).
For each x ∈ X, we denote by Sx(F×) the space of all functions from F× to X of the

form ϕ · x, with ϕ ∈ S (F×). We recall that (5) defines a representation of the mirabolic
subgroup of GL2(F ) on S (F×). We see, moreover (applying Lemma 3.3), that the space of
ϕ ∈ S (X) such that ϕ · x ∈ Sx(F×) ∩ V is preserved by the operations

(16) {x 7→ ϕ(x)} 7→ {x 7→ τ(bx)ϕ(ax)}.

We claim that this representation of the mirabolic subgroup on S (F×) is irreducible.13

Having shown this, as long as we can demonstrate that there exists some nonzero ξx ∈
Sx(F×)∩V for enough x to span X, then the orbit of ξx under the mirabolic subgroup, i.e.,

π

(
a b
0 1

)
ξx, spans all of Sx(F×). This implies Sx(F×) ⊂ V , which we have shown implies

that SX(F×) ⊂ V , as desired. We will postpone the proof that Sx(F×) ∩ V 6= 0 until after
we have proven the irreducibility claim; the two arguments are very similar.

The irreducibility of the action of the mirabolic subgroup on S (F×) given by (16) is
important enough that we honor it with its own lemma:

Lemma 3.7. The representation of the mirabolic subgroup

{(
a b
0 1

)
: a ∈ F×, b ∈ F

}
⊂

GL2(F ), acting on S (F×) via

(17)

(
a b
0 1

)
: {x 7→ ϕ(x)} 7→ {x 7→ τ(bx)ϕ(ax)}

is irreducible.

Proof. Let H be a mirabolic-subrepresentation of S (F×) under (17). Each function ξ ∈
S (F×) is fixed by an open subgroup of the group of units O×F , where a ∈ O×F acts on ξ via
{x 7→ ξ(x)} 7→ {x 7→ ξ(ax)}.

We now define the space S (F×)(χ), for each character χ of O×F , as the the space of
all ξ ∈ S (F×) such that

(18) ξ(ux) = χ(u)ξ(x)

13 Note that this is the analogue of what, in the finite field case, Piatetski-Shapiro calls Vπ (see [5]). Vπ is
also irreducible; in fact, this representation and its irreducibility play much the same role here as they do in
the classification of irreducible representations of GL2(Fq).

14
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for all u ∈ O×F , x ∈ F×. We claim14 that

(19) S (F×) =
⊕
χ

S (F×)(χ).

Indeed, we find that if ξ ∈ S (F×) is stabilized by a subgroup – say, 1 + a ⊂ O×F –
then it is constant on the F×-cosets of 1 + a. Since ξ is compactly supported in F×, we may
break ξ up into a finite combination of indicator functions

(20) ξ =
∑
i,k

ξ($k · ui)1$k·ui·(1+a)

for ui a (finite, since O×F is compact) collection of (1 + a)-coset representatives in O×F and
k ∈ Z. We thus find that for each fixed k, the function

(21) ξk :=
∑
i

ξ($k · ui)1$k·ui·(1+a) = ξ · 1{x : vp(x)=k}

is determined by its values on the set {$kui}i. Since the quotient A := O×F /(1 + a) is a
finite Abelian group, we know, by elementary character theory, that all functions on A can
be expressed uniquely as a finite linear combination of characters of A. Any character of A
can then be lifted to a character of O×F with kernel 1 + a.

For each character χ of O×F , define

(22) χ∗(x) =

{
χ(x) if x ∈ O×F
0 if x /∈ O×F .

We find that we may write

(23) ξk(x) =
∑
χ

ak,χ(ξ)χ∗($
−kx).

where χ ranges over all characters of O×F with kernel containing 1 + a (note that such char-
acters are in bijection with characters of A), and ak,χ(ξ) are (uniquely determined) complex
numbers.15 Now we fix the character χ and sum over k:

14 This claim is taken for granted in both Jacquet-Langlands and Godement. The argument is straightforward
but slightly fussy. We believe that the full demonstration offers some interesting insight into the structure of
S (F×). All the same, we hope that including it does not impede the flow of the proof of Lemmas 3.6 and
3.7 too drastically.
15 We note that there is an implicit dependence between ξ and χ in our definition of ak,χ(ξ): we are assuming
that χ is trivial on 1 + a, where 1 + a is a multiplicative group such that ξ(ax) = ξ(x) for all a ∈ 1 + a. We
may extend ak,χ(ξ) to ξ that do not possess this property by declaring that in this case ak,χ(ξ) = 0. Then

15
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(24) ξχ(x) :=
∑
k

aχ,k(ξ)χ∗($
−kx).

We see that

(25) ξ =
∑
χ

ξχ(x)

and that ξχ(ux) = χ(u)ξ(x) for all u ∈ O×F , x ∈ F×. I.e., ξχ ∈ S (F×)(χ). The uniqueness of
this decomposition, i.e., directness of the sum in (19), follows from the linear independence
of characters. Hence we have (19). Moreover, we see that in order to show H 6= 0 =⇒
H = S (F×), it suffices to prove that H 6= 0 =⇒ χ∗ ∈H for all O×F -characters χ.

We define H (χ) to be the space H ∩S (F×)(χ). First we claim that, if H 6= 0, there
is some χ such that H (χ) 6= 0. Indeed, let ξ ∈ H be nonzero. We may decompose ξ into
constituent ξχ as in (25). Pick some χ for which ξχ 6= 0 (some such χ must exist or else ξ = 0
contrary to assumption). Then we may recover ξχ via the symmetrizing integral:

(26) ξχ(x) =

∫
O×F

ξ(xt)χ(t)d∗t.

This follows from decomposing ξ(xt) into
∑

χ

∑
k ak,χ(ξ)χ∗($

−kxt), and then applying or-

thogonality of characters of the finite Abelian group A := O×F /(1 + a). We observe that,
since ξ ∈ H , so is the integral on the RHS of (26), since the integral boils down to a finite
sum of a complex number times a function of the form x 7→ ξ(xt), and each of these are
mirabolic-translates of ξ and so lie in H . Thus ξχ ∈H (χ), and by hypothesis ξχ 6= 0.

Now we will have the first appearance of the basic motive force behind all of our
arguments: Gauss sums. Let H (χ) 6= 0, and let ξ ∈H (χ) be nonzero. Then pick a distinct
character χ′ 6= χ. By invariance of H under (17), we find that the function

ξ′(x) :=

∫
O×F

τ(ubx)ξ(uax)χ′(u)d∗u

= Γ(bx, χχ′)ξ(ax)(27)

is in H (since the integral amount to a finite sum of mirabolic-translates of ξ) where Γ is a
Gauss sum defined by

(28) Γ(x, λ) =

∫
O×F

τ(xu)λ(u)d∗u

we may write ξ(x) =
∑
χ

∑
k ak,χ(ξ)χ∗($

−kx) as a sum over all characters of O×F , understanding that the a
priori infinite collection of summands vanishes for all but a finite number of terms.

16
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for all x ∈ F and all characters λ of O×F . But if λ is a nontrivial character then the basic
properties of Gauss sums show that:

(29) Γ(x, λ) 6= 0 ⇐⇒ vp(x) = −d− cond(λ)

where p−d = ker(τ), as always; while cond(λ) denotes the conductor of λ.
Since χ 6= χ′, we have that χχ′ is nontrivial, which implies that we may pick nonzero

b ∈ F such that Γ(bx, χχ′) 6= 0 ⇐⇒ x ∈ O×F . Then we pick a ∈ F× such that ξ(ax) 6= 0
if x ∈ O×F . We see that (27) lies in H (χ′) and is only supported on O×F . Thus it is a scalar
multiple of χ′∗. Hence χ′∗ ∈ H for all χ′ 6= χ; to see that χ∗ ∈ H as well, we simply apply
the same argument but using χ′ in place of χ, letting ξ = χ′∗ (which we know to lie in H
from the argument immediately prior).

We have now proved proved that all χ∗ ∈ H . Thus S (F×)(χ) ⊂ H for all χ and so
H = S (F×). This completes the proof of Lemma 3.7.

�

To finish the proof of Lemma 3.6, we must show that Sx(F×) 6= 0 for enough x ∈ X
to generate X.

Let ξ ∈ V be nonzero. We know by the final statement of Lemma (3.6) (proved above)

that ξ − π
(

1 b
0 1

)
ξ ∈ SX(F×), and by Proposition 3.1 b) this is nonzero for some b ∈ F .

Thus we may assume without loss of generality that ξ ∈ SX(F×) ∩ V . We may, imitating
the arguments outlined in equations (20)-(26), decompose ξ into a sum of the form

ξ(x) =
∑
k

∑
χ

xk,χ(ξ)χ∗($
−kx)

where xk,χ are vectors in X. By analogy with the above, let us define SX(F×)(χ), for each
character χ of O×F , as the the space of all ξ ∈ SX(F×) such that ξ(ux) = χ(u)ξ(x) for all
u ∈ O×F , x ∈ F×. As before we may break ξ up into

(30) ξ =
∑
χ

ξχ

where ξχ ∈ SX(F×)(χ). And as before we may recover the ξχ from ξ from the integral

ξχ(x) =

∫
O×F

ξ(xt)χ(t)d∗t,

where the integrand is understood to take values in X. Since ξ 6= 0 we may pick a χ such
that ξχ 6= 0. The image of ξ in X is finite since ξ ∈ SX(F×), so we find that the integral
is a finite sum of functions x 7→ ξ(xt), each of which are GF -translates of ξ. Thus, there
exists nonzero ξχ ∈ V ; i.e., SX(F×)(χ) ∩ V 6= 0. Moreover (30) shows us that collection of
all SX(F×)(χ) ∩ V , as χ ranges over all characters of O×F , spans all of V .

17
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We now show that Sx(F×) ∩ V 6= 0 for all x ∈ X satisfying the following condition:

(31) There exists ξ ∈ SX(F×)(χ) ∩ V for some χ such that ξ(1) = x.

Recall that ξ 7→ ξ(1) is the same thing as sending ξ to ξ mod V0 (where V0 is the subspace
of twisted unipotent averages). Since the collection of ξ ∈ SX(F×)(χ) ∩ V spans all of V ,
we see that the collection of x satisfying (31) spans all of X = V/V0.

Say we have some nonzero ξ ∈ SX(F×)(χ) ∩ V . We may, replacing ξ(x) by ξ(ax) for
some a ∈ F×, ensure that ξ(1) := x 6= 0 (c.f. Lemma 3.5). Picking a distinct character χ′,
we repeat the above Guass sum construction, defining:

ξ′(x) =

∫
O×F

τ(ubx)ξ(uax)χ′(u)d∗u

= Γ(bx, χχ′)ξ(ax).(32)

As before, we find that ξ′ ∈ SX(F×)(χ′)∩V . We pick a = 1 and choose b so that Γ(bx, χχ′) 6=
0 ⇐⇒ x ∈ O×F . Then ξ′(x) = 0 unless x ∈ O×F . On the other hand, if x ∈ O×F , we have
ξ′(x) = χ′(x)ξ′(1) = χ′(x) · cx for some (nonzero) complex constant c coming from the
Gauss sum. I.e., ξ′ = c · χ′∗ x. Therefore χ′∗ x ∈ Sx(F×) ∩ V for all χ∗ 6= χ. In particular,
Sx(F×) ∩ V 6= 0 for all x ∈ X satisfying (31). Thus the proof of Lemma 3.6 is complete.

�

4. The Commutativity Lemma

We now come to the core component of our argument. So far, we have only really been
making use of the properties of the mirabolic representation stipulated by the statement of
the theorem. It is now time that we leave the familiar pastures of the mirabolic, and enter
the vasty forests of GL2.

Recall from the Bruhat decomposition that GL2 is generated by mirabolic subgroup,
scalar multiples of the identity, and the special Weyl-group element

w :=

(
0 1
−1 0

)
.

So to extend from a representation of the mirabolic to a representation of all of GL2, we must,
as we did in the finite-field case, specify the action of scalar matrices, and specify the action
of w. The former problem is not difficult: since our representation is irreducible, and scalar
matrices are central, we may apply Schur’s theorem, and note that there exists a “central
character” ωπ : F× → C such that

(33) ωπ(t)1 = π

(
t 0
0 t

)
.

18
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Note that ωπ is locally constant and equals 1 in a neighborhood of t = 1.
So we now turn our attention to the really interesting business: the action of w. It

suffices to specify this action, of course, on our favorite basis16 for the space of locally constant
X-valued functions on F×: the set of (appropriately scaled) characters χ times an element
of x ∈ X. Indeed, let us define the function χt,x : F× → X via

(34) χt,x(x) :

{
χ(t−1x)x if x ∈ O×F
0 if x /∈ tO×F

for all t ∈ F× and x ∈ X, where χ is a (continuous) character17 of O×F . If we drop the t
subscript, and just write χx, we take this to mean χ1,x. Note that

(35) χt,x(x) = χx(t−1x).

As shown above, these functions span all of SX(F×). The Fourier inversion formula on F×

tells us18 that, for ξ ∈ SX(F×), we have

(36) ξ =
∑
tO×F

∑
χ

χt,x

where

(37) x := x(t, χ) :=

∫
O×F

ξ(tu)χ(u)d∗u

where we assume that the measure d∗u is the unique Haar measure on F× that assigns a
volume of 1 to O×F .

Now, we define a linear endomorphism Jπ(t, χ) : X → X for each t ∈ F× character χ
of O×F , via19:

16 The perceptive reader might object to our use of the term “basis” here. This is not unwarranted. The
functions χt,x are not even linearly independent – clearly χt,x and χt,λx are scalar multiples. We can of
course restrict to those xi forming a basis for X, and restrict to those t of the form $k for integers k. In this
case we do indeed get a basis, but only for the space SX(F×); it is not quite a basis for V (or for the much
larger space of all locally constant X-valued functions on F×), since this will contain certain infinite sums of
the functions χ$k,xi

.
17 It is worth noting that such characters of O×F are always unitary. Indeed, the image of χ must be a compact
multiplicative subgroup of C×, and the set of norms |χ(x)| must be a compact multiplicative subgroup of
R+. Thus |χ(x)| = 1 and χ is unitary.
18 We may of course skirt the use of Fourier inversion here and apply the work done above to decompose
SX(F×) into a basis of functions χ$k,xi

. But it is worth noting that such a decomposition is really arising
from the general Fourier inversion formula on F×.
19 The notation J here is taken from Godement. It is meant to insinuate Bessel functions. These operators
J will play an analogous role to the function j found in [5] in his explicit construction of absolutely cuspidal
representations of GL2(Fq). In [5], j was a finite-field analogue of the Bessel function, defined by a sum very
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(38) Jπ(t, χ) : x 7→ (π(w)χt,x) (1) = L [π(w)χt,x] .

We note that this operator is linear since it is the composition of linear operators; note that
the assignment x 7→ χt,x is a linear map from X to SX(F×).

We now compute what the defining relations on GL2 tell us about these operators J .
Firstly, by (35), we have:

Jπ(t, χ)x = L

[
π(w)π

(
1/t 0
0 1

)
χx

]
= L

[
π

(
1 0
0 1/t

)
π(w)χx

]
= L

[
π

(
1/t 0
0 1/t

)
π

(
t 0
0 1

)
π(w)χx

]
= ωπ(t−1) · (π(w)χx) (t).(39)

Since χx ∈ SX(F×) ⊂ V by Lemma 3.6, we see that the function t 7→ Jπ(t, χ)x, which

equals π(w)π

(
1/t 0
0 1

)
χx, also lies in V . (However, it is worth noting that Jπ(t, χ)x may

not, and generally will not, be in SX(F×).) Applying Lemma 3.4 we see that t 7→ Jπ(t, χ)x
is locally constant, and vanishes for |t| sufficiently large. (Alas, we will not, in general, have
that t 7→ Jπ(t, χ)x vanishes for |t| sufficiently small.)

We also find that t 7→ Jπ(t, χ)x lies in20 V (χ):

Jπ(tu, χ) : x 7→ (π(w)χtu,x) (1) =
(
π(w)χ(u)χt,x

)
(1) =

[
χ(u)Jπ(t, χ)

]
(x)

whence

(40) Jπ(tu, χ) = χ(u)Jπ(t, χ).

Applying π(w) to the Fourier inversion formula (36), and evaluating at 1, we find that
if ξ ∈ SX(F×), then

similar to the contour-integral representaiton of Bessel functions of the first kind; moreover, convolving with
j gave us (roughly speaking) the action of the element w ∈ GL2(F1). Unfortunately, unlike in the finite field
case we cannot immediately write down a single function J(t) which gives us an integral kernel for the action
of π(w); we can only write J “character-locally” as J(t, χ).
20 We cannot yet conclude, however, that it lies in Vx(χ) since the operator Jπ(t, χ) might not preserve the
subspace of X generated by x. (But recall that in the end, X will turn out to be one-dimensional, so all
nonzero vectors will be scalar multiples of one another.)
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(π(w)ξ)(1) =
∑
tO×F

∑
χ

Jπ(t, χ) [x(t, χ)]

=
∑
tO×F

∑
χ

Jπ(t, χ)

[∫
O×F

ξ(tu)χ(u)d∗u

]

which, subsuming the
∑

tO×F
into the integral, gives us the convolution formula:

(41) (π(w)ξ)(1) =
∑
χ

∫
F×

Jπ(y, χ)ξ(y)d∗y.

We would of course like to be able to write J(y) =
∑

χ Jπ(y, χ) and then simplify the above
to

(42) (π(w)ξ)(1) =

∫
F×

Jπ(y)ξ(y)d∗y,

but we do not yet have the absolute convergence of the sum (41). To obtain the formula for

(π(w)ξ)(x) for an arbitrary x ∈ F×, we plug π

(
x−1 0
0 1

)
ξ in place of ξ into (41). The left

hand side becomes

π(w)π

(
x−1 0
0 1

)
ξ = π

(
0 1
−1 0

)
π

(
x−1 0
0 1

)
ξ

= π

(
1 0
0 x−1

)
π

(
0 1
−1 0

)
ξ

= π

(
x−1 0
0 x−1

)
π

(
x 0
0 1

)
π

(
0 1
−1 0

)
ξ

= ωπ(x−1)(π(w)ξ)(x),

while the right hand side becomes

∑
χ

∫
F×

Jπ(y, χ)

(
π

(
x−1 0
0 1

)
ξ

)
(y)d∗y =

∑
χ

∫
F×

Jπ(y, χ)ξ(x−1y)d∗y

=
∑
χ

∫
F×

Jπ(xy, χ)ξ(y)d∗y

by change of variables. Thus we obtain the convlution formula:
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(43) (π(w)ξ)(x) = ωπ(x)
∑
χ

∫
F×

Jπ(xy, χ)ξ(y)d∗y.

We note that for ξ ∈ SX(F×) the integral is only supported on a compact subdomain of F×,
and so manifestly converges. (We might recall that Jπ(xy, χ) vanishes for sufficiently large
|y|; but, as discussed before, we do not have convergence of Jπ(xy, χ) as y → 0. Thus we
must require the test-function ξ to lie in SX(F×) to have convergence.) Moreover, the sum
vanishes for all but finitely many characters χ.

We now come to the central lemma of the theorem.

Lemma 4.1. All operators Jπ(x, χ) commute.

Proof. This lemma results from following tracing through the consequences of the final and

most complicated relation on w. Let us define u(t) :=

(
1 t
0 1

)
for all t ∈ F , and define the

diagonal matrix h(t) :=

(
t 0
0 1/t

)
for all t ∈ F×. We have the fundamental relation21

(44) wu(t)w−1 = u(−1/t)wh(t)u(−1/t)

which follows from applying the Bruhat decomposition to the left hand side.
We now compute the effect of each side of (44) on an arbitrary function ξ ∈ SX(F×).

We begin with the right-hand side, as we will encounter a small-but-easily-remediable tech-
nicality on the left hand side.

First, we apply u(−1/t), which sends x 7→ ξ(x) to x 7→ τ(−x/t)ξ(x). Applying h(t) =(
1/t 0
0 1/t

)(
t 0
0 1

)
to this function, we replace x by t2x throughout and then scale the result

by ωπ(t). We obtain x 7→ ωπ(1/t)τ(−tx)ξ(t2x). Now we apply π(w) to this, and invoking
formula (43), we find that we get

x 7→ ωπ(x)
∑
χ

∫
F×

Jπ(xy, χ)ωπ(1/t)τ(−ty)ξ(t2y)d∗y.

Finally, applying u(−1/t) to this function; i.e., multiplying by τ(−x/t), we get:

x 7→ τ(−x/t)ωπ(x)
∑
χ

∫
F×

Jπ(xy, χ)ωπ(1/t)τ(−ty)ξ(t2y)d∗y

= ωπ(x/t)
∑
χ

∫
F×

Jπ(xy/t2, χ)τ [−t−1(x+ y)]ξ(y)d∗y,(45)

21 Note that both sides are equal to the “opposite” unipotent matrix

(
1 0
−t 1

)
.
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with the last equality coming from the change of variables y 7→ t2y.
Now we compute the effect π of the left hand side of (44) on ξ. There is a slight issue

we will encounter, however: we know from (43) what π(w−1) = −π(w) will do to ξ, and then
from the specified mirabolic action what u(t) will do to that. But we cannot immediately
determine what π(w) will do to that : once we have applied w to ξ once, the resulting function
is no longer guaranteed to be in SX(F×). Thus we cannot apply formula (43) to π[u(t)w−1]ξ,
and so we are in the dark with respect to how to proceed.

To get around this obstacle, we will perform an ingenious and useful trick: we note
that

π[wu(t)w−1]ξ = π(w)[π(u(t))π(w−1)ξ − π(w−1)ξ] + ξ

= ωπ(−1)π(w)[π(u(t))π(w)ξ − π(w)ξ] + ξ.(46)

The virtue of (46) is that, by the final part Lemma (3.6), the expression in the brackets is
in SX(F×). Thus we are perfectly entitled to apply (43) to determine the action of π(w) on
the function in brackets.

Proceeding as we did before, we find that the expression in brackets is given by

x 7→ ωπ(x)
∑
χ

∫
F×

Jπ(xy, χ)ξ(y)[τ(tx)− 1]d∗y.

Applying ωπ(−1)π(w) to this function yields:

x 7→ωπ(−1)ωπ(x)
∑
χ′

∫
F×

Jπ(xz, χ′)

(
ωπ(z)

∑
χ

∫
F×

Jπ(zy, χ)ξ(y)[τ(tz)− 1]d∗y

)
d∗z

= ωπ(−x)
∑
χ′,χ

∫∫
F××F×

Jπ(xz, χ′)Jπ(zy, χ)ξ(y)[τ(tz)− 1]ωπ(z)d∗y d∗z

where swapping the order of the integrals and sums is legitimate since the internal sum is,
in fact, finite.22 Adding the remaining ξ term, we find that

(π[wu(t)w−1]ξ)(x) =

ξ(x) + ωπ(−x)
∑
χ′,χ

∫∫
Jπ(xz, χ′)Jπ(zy, χ)ξ(y)[τ(tz)− 1]ωπ(z)d∗y d∗z.(47)

Let us call this function ηt(x); note that (45) gives us “the other” formula for ηt(x).
Let t1, t2 ∈ F×. Computing ηt1(x)−ηt2(x) using (45) and (47), we find (after cancelling

ωπ(−x) from each side) that

22 This is because the difference τ(tz) − 1 vanishes at (and in some neighborhood of) z = 0. Thus the
integral will converge for each fixed χ, χ′; moreover, the integral will vanish if the conductor of the product
χ′χ becomes sufficiently large. Thus the sum is in fact finite for each fixed x.
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ωπ(−t−11 )
∑
χ

∫
F×

Jπ(xy/t21, χ)τ [−t−11 (x+ y)]ξ(y)d∗y

− ωπ(−t−12 )
∑
χ

∫
F×

Jπ(xy/t22, χ)τ [−t−12 (x+ y)]ξ(y)d∗y

=
∑
χ′,χ

∫∫
Jπ(xz, χ′)Jπ(zy, χ)ξ(y)[τ(t1z)− τ(t2z)]ωπ(z)d∗y d∗z.(48)

This formula may at first seem to be an unseemly mess; but it is, upon closer inspection,
one of the most beautiful and important identities we have seen thus far. We see that the
formula gives the equality of the action of two integral kernels on a function ξ. The left hand
side, for instance, has kernel

K(x, y) := ωπ(−t−11 )Jπ(xy/t21, χ)τ [−t−11 (x+ y)]

− ωπ(−t−12 )Jπ(xy/t22, χ)τ [−t−12 (x+ y)]

which takes values in End(X). And now we make what appears to be a totally innocent
observation, but in fact is the single most important insight in this entire proof: this kernel
is symmetric in x and y.

An immediate consequence of this observation is that the (equal) kernel on the right
hand side of (48), i.e.,

(49) K(x, y) =
∑
χ′,χ

∫
Jπ(xz, χ′)Jπ(zy, χ)[τ(t1z)− τ(t2z)]ωπ(z) d∗z,

is also symmetric in x an y.23 But this is not a priori obvious like was on the left hand side
– it tells us something new! Indeed, swapping x and y yields

(50) K(y, x) =
∑
χ,χ′

∫
Jπ(zy, χ)Jπ(xz, χ′)[τ(t1z)− τ(t2z)]ωπ(z) d∗z,

which almost looks like it is the same expression – except that the two J operators are
interchanged ! Since the J ’s are not yet known to commute, this is indeed a most astonishing
revelation.

The remainder of this section is devoted to unwinding the equality of the integrals
(49) and (50), in order to obtain the equality of the operators Jπ(xz, χ′)Jπ(zy, χ) and
Jπ(zy, χ)Jπ(xz, χ′). We have that:

23 We note, as in footnote 22, that the difference τ(t1z)− τ(t2z) vanishes at (and in some neighborhood of)
z = 0. Thus the integral will converge for each pair of characters χ, χ′; moreover, the integral will vanish if
the conductor of χχ′ becomes large. Hence the sum is in fact finite for each fixed x, y, t1 and t2.
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∑
χ′,χ

∫
Jπ(xz, χ′)Jπ(zy, χ)[τ(t1z)− τ(t2z)]ωπ(z) d∗z

=
∑
χ,χ′

∫
Jπ(zy, χ)Jπ(xz, χ′)[τ(t1z)− τ(t2z)]ωπ(z) d∗z,(51)

which is actually an equality of finite sums. Applying the transform x 7→ xu or y 7→ yu for
u ∈ O×F (which multiplies each summand by χ′(u) and χ(u) respectively), and recalling the
linear independence of characters, we see that each individual integral must agree:∫

Jπ(xz, χ′)Jπ(zy, χ)[τ(t1z)− τ(t2z)]ωπ(z) d∗z

=

∫
Jπ(zy, χ)Jπ(xz, χ′)[τ(t1z)− τ(t2z)]ωπ(z) d∗z,(52)

where χ and χ′ are fixed characters of O×F . Let

(53) ϕ(z) := ωπ(z)[Jπ(xz, χ′)Jπ(yz, χ)− Jπ(yz, χ)Jπ(xz, χ′)],

which takes values in End(X). We see that

(54)

∫
F×

ϕ(z)[τ(t1z)− τ(t2z)]d∗z = 0

for all t1 and t2 in F×. Note that we may extend the integrand to all of F by letting
ϕ(z)[τ(t1z) − τ(t2z)] = 0 at z = 0; we know, after all, that τ(t1z) − τ(t2z) vanishes on
a neighborhood of z = 0. Since, for each x ∈ X, the X-valued function on F× given
by z 7→ ϕ(z)x is locally constant and compactly supported, we see that (54) tells us that
z 7→ ϕ(z)x has an inverse Fourier transform that is constant. Thus z 7→ ϕ(z)x = 0 for all
z ∈ F×, and so Jπ(xz, χ′)Jπ(yz, χ) = Jπ(yz, χ)Jπ(xz, χ′) for all x, y, z, χ, χ′.

�

Now we may reap the rewards for our labor.

Lemma 4.2. The space X is 1 dimensional.

Proof. First we observe that

(55) V = SX(F×) + π(w)SX(F×)

Indeed, let us denote the space on right hand side by V ′ (a priori a subspace of V ). We check
that V ′ is GF -invariant. By the Bruhat decomposition, we know that it suffices to check
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that V ′ is preserved by the scalar operators λI, the mirabolic operators π

(
a b
0 1

)
, and the

operator π(w). Since the scalar matrices λI act by scalars ωπ(λ), we see that V ′ is clearly
stable under these operators. We also see that π(w) preserves V ′: since π(w)2 = ωπ(−1)I,
we see that applying π(w) to SX(F×) + π(w)SX(F×) merely swaps the two addends. For

the mirabolic, we break up into cases π

(
a 0
0 1

)
and π(u(b)) = π

(
1 b
0 1

)
. Since

π

(
a 0
0 1

)
π(w) = ωπ(a)π(w)π

(
a−1 0
0 1

)
.

and the operators

(
a−1 0
0 1

)
preserve SX(F×), we see that π

(
a 0
0 1

)
V ′ = V ′. Finally we

check invariance under the unipotents. If ξ ∈ SX(F×), then π(u(b))π(w)ξ−π(w)ξ ∈ SX(F×)
by the last part of Lemma 3.6. Thus π(u(b))π(w)ξ ∈ V ′, and we see that V ′ is stable under
all operators in GF . Thus V ′ = V .

Next, we assert that any linear operator A on X that commutes with every Jπ(x, χ) is
a scalar. Indeed, say A were such an operator. Then we define an operator TA, on the space
of locally constant functions from F× to X, by (TAξ)(x) = A(ξ(x)).24 We first claim that TA
commutes with the action of the mirabolic. Indeed:

(
TA π

(
a b
0 1

)
ξ

)
(x) = A

((
π

(
a b
0 1

)
ξ

)
(x)

)
= A (τ(ax)ξ(bx))

= τ(ax)A(ξ(bx))

= τ(ax)(TA(ξ))(bx)

=

(
π

(
a b
0 1

)
TAξ

)
(x).

We note that SX(F×) is certainly preserved by the action of the operator TA; thus, by
Lemma 3.7 we see that TA must act via a scalar on the space Sx(F×) for each x ∈ X. Thus
TA must act as a single scalar, say λ, on all of SX(F×).25

Now, from above, we know that we may write an arbitrary ξ ∈ V as ξ = ξ′ + π(w)ξ′′,
where ξ′, ξ′′ ∈ SX(F×). We find:

24 Note that we do not know whether TAξ ∈ V for all ξ ∈ V .
25 Here we use the linear algebra fact that if a linear operator scales each vector in a vector space then it is
itself a scalar operator.
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(TAξ) (x) = (TA (ξ′ + π(w)ξ′′)) (x)

= λξ′ + (TAπ(w)ξ′′)(x)

= λξ′ + A

(
ωπ(x)

∑
χ

∫
F×

Jπ(xy, χ)ξ′′(y)d∗y

)
.

Recalling that the sum is, in fact, finite, and using the fact that A commutes with all the
Jπ(xy, χ), we obtain

λξ′(x) + ωπ(x)
∑
χ

∫
F×

Jπ(xy, χ)A(ξ′′(y))d∗y = λξ′(x) + ωπ(x)
∑
χ

∫
F×

Jπ(xy, χ)λξ′′(y)d∗y

= λξ.

Thus TA acts as a scalar (by λ) on all of V . Hence, if x ∈ X, and ξ ∈ V is a vector which
equals x mod twisted unipotent averages (i.e., ξ(1) = x), then we see that Ax = A(ξ(1)) =
(TAξ)(1) = (λξ)(1) = λx. Thus A is a scalar on X.

Finally, we apply Lemma 4.1, and see that each of the Jπ(x, χ) are scalars, since they
all commute with one another. Thus every operator on X commutes with all the Jπ(x, χ),
whence every operator on X is a scalar. Thus X is 1 dimensional.

�

5. Finite Codimensionality of S (F×) and Uniqueness of the Kirillov Model

We have just proved that X is 1-dimensional, and thus we may identify (up to an am-
biguous scalar multiple) each erstwhile X-valued function ξ on F× with a C-valued function
on F×. Let us collect our results so far. For every irreducible, admissible, infinite-dimensional
representaiton π, we have shown that we may view π as acting on V , a space of C-valued
functions on F×, which, by Lemma 3.3, has the specified mirabolic action (5). By Lemma
3.4, each such function is locally constant, and vanishes outside of some compact subset of
F ; by Lemma 3.6 we know that S (F×) ⊂ V . We now need to demonstrate that S (F×) is
of finite codimension in V .

To simplify notation, let V∗ := S (F×). We know by (55) that V = V∗ + π(w)V∗.
Quotienting by V∗, we find that we need to show that

(56) dim[V∗/ (π(w)V∗ ∩ V∗)] <∞.

We recall from (19) our decomposition V∗ =
⊕

χ V∗(χ) for each character χ of O×F . We define
a canonical map
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V∗/ (π(w)V∗ ∩ V∗)→
⊕
χ

V∗(χ)/ [π(w)V∗ ∩ V∗(χ)] ,

given by projecting ξ ∈ V∗ onto its V∗(χ) components. We must check that this map is well-
defined. If ξ ∈ π(w)V∗ ∩ V∗, we may, by (25), decompose ξ into

∑
χ ξχ with each ξχ ∈ V∗(χ).

We now show that each ξχ ∈ V∗(χ)/[π(w)V∗ ∩ V∗(χ)]. Indeed, since ξ ∈ π(w)V∗ ∩ V∗,
we see that V∗ 3 η := π(w)−1ξ. Thus η can be decomposed into χ-isotypic components:
η =

∑
χ ηχ with each ηχ ∈ V∗(χ). Applying π(w) to this sum, we find that ξ =

∑
χ π(w)ηχ.

Now we note that π(w)ηχ ∈ V (ωπχ
−1); indeed: (π(w)ηχ) (ux) =

((
u 0
0 1

)
π(w)ηχ

)
(x) =

ωπ(u)

(
π(w)π

(
u−1 0
0 1

)
ηχ

)
(x) = (ωπχ)−1(u)(π(w)ηχ)(x). Thus π(w) sends V (ωπχ

−1) to

V (χ) (in fact, it interchanges them). Hence π(w)η = ξ becomes
∑

χ π(w)η =
∑

χ ξωπχ−1 ; by

the uniqueness of the character-decomposition for ξ, we find that π(w)ηχ = ξωπχ−1 . Thus
ξχ ∈ π(w)V∗ ∩ V∗(χ) for each χ, and the above map is well-defined.

There is also a map in the other direction induced by the inclusions V∗(χ) ↪→ V∗ for
each χ. The resulting homomorphism clearly well-defined, and inverts the map discussed in
the previous paragraph. Hence

(57) V∗/ (π(w)V∗ ∩ V∗) =
⊕
χ

V∗(χ)/ [π(w)V∗ ∩ V∗(χ)] .

Thus, to prove finite dimensionality of the quotient on the LHS of (57), we must
demonstrate two things: 1) that V∗(χ)/ [π(w)V∗ ∩ V∗(χ)] is finite dimensional for all χ, and
2) that V∗(χ)/ [π(w)V∗ ∩ V∗(χ)] = 0 for all but a finite number of characters χ. This in itself
is a rather wonderful fact – a priori it seems stronger than the finite codimensionality of
V∗. (In reality, however, the above does show that they are equivalent.) It also draws our
attention to an important finite collection of characters of O×F that is canonically associated
to a given infinite dimensional admissible representation of GL2(F ) – namely, those χ for
which V∗(χ)/ [π(w)V∗ ∩ V∗(χ)] 6= 0.

At any rate, to prove these claims we shall first prove the following:

Lemma 5.1. For each character χ of O×F , we have π(w)V∗ ∩ V∗(χ) 6= 0.

Proof. If π(w)V∗ = V∗, then clearly we are already done: π(w)V∗ ∩ V∗(χ) = V∗(χ) 6= 0. So let
us suppose that π(w)V∗ 6= V∗, as shown in the proof of Lemma 3.7.

In this case, we will explicitly construct a nonzero ξ ∈ π(w)V∗ ∩ V∗, As always, Gauss
sums will come to our rescue. Let ξ ∈ V∗ be nonzero. We cook up the following ingenious
expression:

(58) π[u(t)w−1]ξ − π(w−1)ξ − π[h(t)u(−1/t)]ξ.
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We claim that this lies in π(w)V∗∩V∗. The difference π[u(t)w−1]ξ−π(w−1)ξ ∈ V∗, by Lemma
3.6, and π[h(t)u(−1/t)]ξ ∈ V∗ by Lemma 3.3. Thus (58) certainly lies in V∗. To show that
(58) also lies in π(w)V∗ = π(w−1)V∗, we applying π(w) to both sides, yielding:

(59) π[wu(t)w−1]ξ − ξ − π[wh(t)u(−1/t)]ξ

and so by the fundamental relation (44) we obtain:

(60) π[u(−1/t)wh(t)u(−1/t)]ξ − ξ − π[wh(t)u(−1/t)]ξ.

Now we find that the difference in the first and third term lies in V∗ by Lemma 3.6, while
ξ ∈ V∗ by assumption. Thus (58) lies in π(w)V∗ ∩ V∗. Our objective now is to specialize t
and ξ so that the usual symmetrization into V∗(χ) is nonzero.

Evaluating (58) at x ∈ F× yields:

(61) ωπ(−1)[τ(tx)− 1](π(w)ξ)(x)− ωπ(t−1)τ(−tx)ξ(t2x).

Replacing x with xu in the above function is tantamount to applying the operator π

(
u 0
0 1

)
=

ωπ(u)h(u), and this operator preserves π(w)V∗ ∩ V∗. Thus the function

x 7→ ωπ(−1)

∫
[τ(txu)− 1]π(w)ξ(xu)χ(u)d∗u

− ωπ(t−1)

∫
τ(−txu)ξ(t2xu)χ(u)d∗u(62)

still lies in π(w)V∗ ∩ V∗. Now we let

ξ(x) = χ′∗(x) :=

{
χ′(x) if x ∈ O×F
0 if x /∈ O×F ,

for a character χ′ of O×F not equal to χ. We recall that

(π(w)ξ)(x) = ωπ(x)Jπ(x, χ′),

and that π(w)ξ ∈ V (ωπχ
′−1).26 Thus V∗ ∩ π(w)V∗ contains the function

26Note, however, that π(w)ξ is not necessarily in V∗(ωπχ
′−1); indeed, we do not necessarily have that

π(w)ξ ∈ V∗.
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x 7→ ωπ(−1)Jπ(x, χ′)

∫
[τ(txu)− 1]ωπ(u)χ′χ(u)d∗u

− ωπ(t−1)χ′∗(t
2x)

∫
τ(−txu)χ′χ(u)d∗u,(63)

which equals

(64)
(
ωπ(x)Jπ(x, χ′)[Γ(tx, ωπχ′χ)− δ(ωπχ′χ)]

)
− ωπ(t−1)χ′∗(t

2x)Γ(−tx, χ′χ)

where Γ is a Gauss sum as in (28), and δ(χ) = 0 unless χ is trivial in which case δ(χ) = 1.
We are done if we may esnure that (64) does not vanish for some well-chosen χ′, x and t.
Luckily, we have very specific control over the vanishing and nonvanishing of Gauss sums, so
this is merely a matter of carefulness.

We may declare victory if we find χ′, x and t such that

Jπ(x, χ′) 6= 0

Γ(tx, ωχ′χ)− δ(ωπχχ′) 6= 0(65)

2v(t) + v(x) 6= 0,

as this will force the parenthetical term in (64) to be nonzero, while it will force the other
term to be zero: indeed, if the factor χ′∗(t

2x) does not vanish then we must have t2x ∈ O×F ,
i.e., 2v(t) + v(x) = 0, contrary to hypothesis.

For every character χ′ of O×F , there exists at least one integer n(χ′), such that v(y) =
n(χ′) if and only if Γ(y, ωπχ′χ)−δ(ωπχ′χ) 6= 0. Indeed, if ωπχ′χ is nontrivial then there exists
exactly one such integer n(χ′), given by n(χ′) = −d− f , where p−d is the kernel of τ and f is
the conductor of ωπχ′χ. If, on the other hand, ωπχ′χ is trivial, then for any n(χ′) > −d and
y such that v(y) = n(χ′), the Gauss sum Γ(y, ωπχχ′) is simply

∫
O×F

τ(yu)d∗u; since τ(yu) is

nontrivial for v(y) > −d, we see that this Gauss sum has total magnitude strictly less than
1,27 whence Γ(y, ωπχχ′)− δ(ωπχχ′) = Γ(y, ωπχχ′)− 1 6= 0.

So we must try to choose x, χ′, and t so that we may force 2v(t)+x(x) 6= 0, v(t)+v(x) =
n(χ′), and Jπ(x, χ′) 6= 0. But if we we have 2v(t) + x(x) = 0 and v(t) + v(x) = n(χ′), then
v(x) = 2n(χ′). So we may pick x and χ′ such that Jπ(x, χ′) 6= 0 and v(x) 6= 2n(χ′), and then
t may be chosen arbitrarily.

What about making Jπ(x, χ′) 6= 0? Here we argue by contradiction. Suppose that we
cannot find x and χ′ such that Jπ(x, χ′) 6= 0 and v(x) 6= 2n(χ′); i.e., Jπ(x, χ′) = 0 =⇒
v(x) = 2n(χ′). Then Jπ(x, χ′) ∈ S (F×) for all χ′. But then by (43), we would have
π(w)V∗ ⊂ V∗, which in turn implies π(w)V∗ = V∗, contrary to our initial assumption. Thus

27 Here we use the triangle inequality: the sum of n complex numbers, each of of whose complex magnitudes
is equal to 1 (as is the case for for the image of τ), is strictly less than n, unless all are equal to 1 (in which
case it equal to n). Upon taking the associated volume measure in the integral for Γ, this implies the above
claim.
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there must exist some χ′ and t such that (64) does not vanish for some x, and so (64), viewed
as a function of x, lies in π(w)V∗ ∩ V∗(χ), and is nonzero.

�

Now we can prove our earlier claims.

Lemma 5.2. The space π(w)V∗ ∩ V∗(χ) has finite codimension in V∗(χ) for every character
χ of O×F .

Proof. A function in ξ ∈ V∗(χ) is uniquely specified by its values ξ($n) for each integer
n. Moreover, for the resulting function to lie in V∗, all but finitely many ξ($n) must be
zero. This accounts for all ξ ∈ V∗(χ), which we now see is isomorphic, as a vector space, to⊕∞

i=−∞C.
We will now show that the dimension of the space linear forms on V∗(χ) that annihilate

π(w)V∗ ∩ V∗(χ) is finite dimensional. Since this is isomorphic to the dual of V∗(χ)/[π(w)V∗ ∩
V∗(χ)], this will immediately demonstrate that π(w)V∗∩V∗(χ) has finite codimension in V∗(χ).

We recall that the dual of
⊕∞

i=−∞C is
∏∞

i=−∞C; explicitly, every linear form λ on
V∗(χ) is given by

(66) λ(ξ) =
∑
n∈Z

λnξ($
n)

where λn are arbitrarily selected complex constants. (Note that there is no requirement that
all but finitely many λn equal 0.) Say that λ annihilates π(w)V∗ ∩ V∗(χ). We now know by
Lemma 5.1 that there exists nonzero ξ ∈ π(w)V∗ ∩ V∗(χ). Let αi := ξ($i). (Note that all
but finitely many αi are zero.) Then we have:∑

αiλi = 0.

Since π

(
$k 0
0 1

)
ξ also lies in π(w)V∗∩V∗(χ) for all k, and

(
π

(
$k 0
0 1

)
ξ

)
($i) = ξ($i+k) =

αi+k, we also have:

(67)
∑

αi+kλi = 0

for all k ∈ Z. Thus the λi satisfy a linear recurrence. But only a finite dimensional space of
sequences can satisfy a linear recurrence, and so our lemma is proved.

�

Lemma 5.3. The space π(w)V∗ contains V∗(χ) for all but finitely many characters χ of O×F .
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Proof. The proof will rely upon the construction of the nonzero ξ ∈ π(w)V∗ ∩ V∗(χ) given by
(64) in Lemma 5.1. We let χ′ = Id, and note that if the conductor of χ (which equals the
conductor of χ) is sufficiently large, then the conductors of ωπχ and χ will agree. Thus the
conductor of ωπχ will equal the conductor of χ for all but finitely many χ. Say this holds for
all χ with conductor f ≥ N , and suppose that f is so large. The function (64) then becomes

(68) ωπ(−x)Jπ(x, Id)Γ(tx, ωπχ)− ωπ(t−1)Id∗(t
2x)Γ(−tx, χ).

The second term is 0 unless 2v(t) + v(x) = 0 and v(t) + v(x) = −d − f . But this simply
means that v(t) = d + f and v(x) = −2(d + f). Recall that if v(x) � 0, then Jπ(x, Id) = 0
– this was a consequence consequence of (39). So increasing N if necessary, we may force
−2(d + f) to be so small that, for all f > N and x such that v(x) = −2(d + f), we have
Jπ(x, Id) = 0. Then we may choose t such that v(t) = d + f . Then (68), as a function of
x, is nonzero if and only if v(x) = −2(d + f). This function lies in π(w)V∗ ∩ V∗(χ), and is
supported on a single class modulo O×F . Thus, we may generate all of V∗(χ) from this single
function (68), as we did in the proof of Lemma 3.7. Hence π(w)V∗ ∩ V∗(χ) ⊃ V∗(χ) for all χ
with conductor greater than N – i.e., for all but finitely many characters χ.

�

We are now almost done: the last thing we need to show is the uniqueness of the
Kirillov Model.

Proposition 5.4. The space V ′ of locally constant complex-valued functions on F× satisfying
the desiderata of Theorem 3.2 is unique, and the representation π′ of GL2(F ) on V ′, satisfying
(5) for a given additive character τ of F , is unique up to a nonzero scalar factor.

Proof. We return briefly to the ξ′ notation of Theorem 3.2. Say that ξ 7→ ξ′ is a mapping
from V to some subspace of the space of locally constant function on F×. Then we have by
(5) that

(69) η = π

(
a b
0 1

)
ξ =⇒ η′(x) = τ(bx)ξ′(ax).

We may define the linear form L(ξ) = ξ′(1) on V ; we clearly have:

(70) ξ′(x) = L

[
π

(
x 0
0 1

)
ξ

]
.

Thus ξ 7→ ξ′ is uniquely determined by L. But then we know from our commentary after
the statement of Theorem 3.2 that L annihilates the space of twisted unipotent averages V0.
Since dim(V/V0) = 1, we see that L is unique up to a scalar multiple, and the proposition
follows.

�
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